Thermophysical and anion diffusion properties of (Ux,Th1−x)O2
نویسندگان
چکیده
Using molecular dynamics, the thermophysical properties of the (U x ,Th1-x )O2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500-3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO2 than in pure ThO2. Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (U x ,Th1-x )O2 solid solutions. Unlike in UO2 and ThO2, there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U x ,Th1-x )O2.
منابع مشابه
The effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملThe effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملThermophysical properties and oxygen transport in (Thx,Pu1−x)O2
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1-x)O2 (0 ≤ x ≤ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy ...
متن کاملAn Experimental Study on Thermophysical Properties of Multiwalled Carbon Nanotubes (RESEARCH NOTE)
Nanofluids are the heat transfer fluids having remarkable thermal properties. The paper presents the experimental analysis of thermal conductivity, density, specific heat and viscosity of multiwalled carbon nanoparticles dispersed in water at various temperatures and particle concentrations. To examine the forced convection heat transfer of Multiwalled Carbon Nanotubes (MWCNT)-water nanofluid, ...
متن کاملThermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches
We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature...
متن کامل